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Abstract

We have developed a wind turbine system that consists of a diffuser shroud with a broad-ring

flange at the exit periphery and a wind turbine inside it. The flanged-diffuser shroud plays a role

of a device for collecting and accelerating the approaching wind. Emphasis is placed on positioning

the flange at the exit of a diffuser shroud. Namely, the flange generates a low-pressure region in

the exit neighborhood of the diffuser by vortex formation and draws more mass flow to the

wind turbine inside the diffuser shroud. To obtain a higher power output of the shrouded wind

turbine, we have examined the optimal form of the flanged diffuser, such as the diffuser open angle,

flange height, hub ratio, centerbody length, inlet shroud shape and so on. As a result, a shrouded

wind turbine equipped with a flanged diffuser has been developed, and demonstrated power

augmentation for a given turbine diameter and wind speed by a factor of about 4–5 compared

to a standard (bare) wind turbine. In a field experiment using a prototype wind turbine with a

flanged diffuser shroud, the output performance was as expected and equalled that of the wind tunnel

experiment.
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1. Introduction

For the application of an effective energy resource in the future, the limitation of
fossil fuels is clear and the security of alternative energy sources is an important subject.
Furthermore, as concerns for environmental issues, i.e., global warming, etc., the
development and application of renewable and clean new energy are strongly expected.
Among others, wind energy technologies have developed rapidly and are about to play a
big role in a new energy field. However, in comparison with the overall demand for energy,
the scale of wind power usage is still small; especially, the level of development in Japan is
extremely small. As for the reasons, various causes are conceivable. For example, the
limited local area suitable for wind power plants, the complex terrain compared to that in
European or North American countries and the turbulent nature of the local wind are
pointed out. Therefore, the introduction of a new wind power system that produces higher
power output even in areas where lower wind speeds and complex wind patterns are
expected is strongly desired.

Wind power generation is proportional to the wind speed cubed. Therefore, a large
increase in output is brought about if it is possible to create even a slight increase in the
velocity of the approaching wind to a wind turbine. If we can increase the wind speed by
utilizing the fluid dynamic nature around a structure or topography, namely if we can
concentrate the wind energy locally, the power output of a wind turbine can be increased
substantially. Although there have been several studies of collecting wind energy for
wind turbines reported so far (Lilley and Rainbird, 1956; Gilbert et al., 1978; Gilbert
and Foreman, 1983; Igra, 1981; Phillips et al., 1999, 2000; Bet and Grassmann, 2003;
Nagai and Irabu, 1987), it has not been an attractive research subject conventionally.
Unique research that was carried out intensively in the past is the examination of a
diffuser-augmented wind turbine (DAWT) by Gilbert et al. (1978), Gilbert and Foreman
(1983), Igra (1981) and others around 1980. In their studies, there was a focus on
concentrating wind energy in a diffuser with a large open angle; a boundary layer
controlled with several flow slots was employed to realize a flow that goes along the inside
surface of the diffuser. Thus, the method of boundary layer control prevents pressure loss
by flow separation and increases the mass flow inside the diffuser. Based on this idea, a
group in New Zealand (Phillips et al., 1999, 2000) developed the Vortec 7 DAWT. They
used a multi-slotted diffuser to prevent separation within the diffuser. Bet and Grassmann
(2003) developed a shrouded wind turbine with a wing-profiled ring structure. It was
reported that their DAWT showed an increase in power output by the wing system by a
factor of 2.0, compared to the bare wind turbine. Nagai and Irabu (1987) investigated a
venturi-type structure, i.e., the front portion is a nozzle and the rear portion is a diffuser, as
a structure concentrating the wind energy, especially paying attention to the effect of the
diffuser part. He analyzed the flow inside the venturi-type structure using a momentum
theory. Although several other ideas have been reported so far, most of them do not
appear to be reaching commercialization.

The present study, regarding the development of a wind power system with high output,
aims at determining how to collect the wind energy efficiently and what kind of wind
turbine can generate energy effectively from the wind. For this purpose, we have developed
a diffuser-type structure that is capable of collecting and accelerating the approaching
wind. Namely, we have devised a diffuser shroud with a large flange that is able to increase
the wind speed from approaching wind substantially by utilizing various flow
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characteristics, e.g., the generation of low-pressure region by vortex formation, flow
entrainment by vortices and so on, of the inner or peripheral flows of a diffuser shroud
equipped with a flange. Although it adopts a diffuser-shaped structure surrounding a wind
turbine like the others (Lilley and Rainbird, 1956; Gilbert et al., 1978; Gilbert and
Foreman, 1983; Igra, 1981; Phillips et al., 1999, 2000; ; Bet and Grassmann, 2003; Nagai
and Irabu, 1987), the feature that distinguishes it from the others is a large flange attached
at the exit of the diffuser shroud. Furthermore, we placed a wind turbine inside the diffuser
shroud equipped with a flange and evaluated the power output generated. As a result, the
shrouded wind turbine equipped with a flanged diffuser demonstrated power augmenta-
tion for a given turbine diameter and wind speed by a factor of about 4–5 compared to a
standard micro wind turbine.
2. Wind tunnel experiment

The large boundary-layer wind tunnel of the Research Institute for Applied Mechanics,
Kyushu University, was used. It had a 3.6m wide� 2m high� 15m long measurement
section and the maximum wind velocity was 30m/s. Various hollow-structure models of
the pyramid type or cone type were made of polystyrene, acrylic or aluminum plates. The
models were hung and supported by strings in the center of the wind tunnel section.
The distributions of wind velocity U and static pressure p along the central axis or
periphery of the hollow-structure model were measured with an I-type hot-wire and a
static-pressure tube using a traversing system. The static-pressure coefficient is defined as
Cp ¼ (p�pN)/(0.5rUN

2 ), where UN is the approaching wind speed, r is the air density, and
pN is the static pressure that corresponds to UN in a far upstream position.
The representative scale length of a model is the entrance width (or the entrance diameter)
D of 12–60 cm, the wind velocity UN ¼ 5m/s, and the Reynolds number Re ¼ 4�
104�1.3� 105. In the case of using a big hollow-structure model, paying attention to the
blockage effect in the wind tunnel, we removed the walls of the ceiling and both sides
ranging 6m in the center portion of the measurement section. Namely, we used our wind
tunnel with an open-type test section to avoid the blockage effect. The smoke-wire
technique was employed for the flow visualization experiment.
3. Development of a collection-acceleration device for wind (diffuser shroud equipped with a

flange)

3.1. Selection of a diffuser-type structure as the basic form

We examined the inner flow of three typical hollow structures, as shown in Fig. 1;
namely, a nozzle-type model that reduces the inside cross-section, a cylindrical-type model
that has a constant inside cross-section and a diffuser-type model that expands the inside
cross-section downstream. For both ends of the hollow-structure model, the narrow-end is
a square cross-section of D ¼ 12 cm and the wide end is D ¼ 24 cm. The area ratios m
defined as the outlet area/inlet area of the three hollow-structure models are 1/4, 1 and 4
for the nozzle-, cylindrical- and diffuser-type models, respectively. For the nozzle and
diffuser types, the angle of inclination j is 3.71. The length ratio L/D ¼ 7.7, here, L is the
model length.
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Fig. 1. Three types of hollow structures.
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Figs. 2a and b show the wind velocity distribution U/UN and static pressure distribution
Cp on the central axis of a hollow-structure model. As seen in Fig. 2a, the diffuser
model has a remarkable effect on the collection and acceleration of the approaching
wind. A maximum of U/UN�1.8 is shown in the neighborhood immediately after the
entrance. Here, x/L ¼ 0 is the model entrance and x/L ¼ 1 is the model exit. Figs. 3a
and b show the flows inside and outside the nozzle- and diffuser-type models. The flow is
from left to right. As seen in Fig. 3a, the wind tends to avoid the nozzle-type model, while
the wind flows into the diffuser-type model as it is inhaled, as seen in Fig. 3b. Examining
the optimal inclination angle j (the half-open angle) of this diffuser, it is found that
the angle j of around 41 is most effective. Also, for the diffuser model, we examined the
relationship between the maximum increase ratio (speed-up ratio) Umax/U (Umax is the
maximum wind speed on the central axis) and the length ratio of L/D. Wind speed
gradually increases with L/D, as shown in Fig. 4 (the case of diffuser only). Thus,
it was confirmed that the diffuser structure is most effective for collecting and accelerating
the wind.

3.2. Improvement of speed-up performance of the diffuser structure by the addition of

periphery appendages

It was found that a remarkable increase in wind speed was obtained if a long diffuser
body over L/D ¼ 3 is used, as shown in Fig. 4 (the case of diffuser only). However, in the
practical point of view, it is preferable to have a short diffuser body with a L/D of less than
2 that has similar performance to that of a long diffuser body. Therefore, we examined a
short diffuser-type structure which is capable of providing more effective performance by
applying various ideas to the short body (Ohya et al., 2002). A diffuser model with a
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Fig. 2. Wind velocity and static pressure distributions on the central axis of a hollow structure, L/D ¼ 7.7. The

area ratios m (outlet area/inlet area) of the three hollow-structure models are 1/4, 1 and 4 for the nozzle-,

cylindrical- and diffuser-type models, respectively: (a) wind velocity and (b) static pressure.
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square section of D ¼ 40 cm and with a half-open angle j ¼ 41 was used in this
experiment.
As a result of several attempts, it was found that wind speed is increased by adding an

appropriate entrance (called an inlet shroud) and a ring-type flange at the exit periphery
(see Figs. 5, 6, 8 and 9) to the diffuser body. The inlet shroud opening has a smooth curved
surface surrounding the entrance of the diffuser model. The flange is a ring-type square
plate with a height of h ¼ 10 cm (h/D ¼ 0.25), and is attached vertically to the outer
periphery of the diffuser model at the exit. As shown in Fig. 4, when both the inlet shroud
and the flange are employed, a remarkable increase in wind speed can be obtained,
exceeding the case of a diffuser model only, and achieving a high velocity that is 1.6–2.4
times greater than that of the approaching wind velocity UN. For even a short diffuser
(L/D ¼ 1.5) with flange attached to the downstream edge, U/UN�1.7 was achieved.
The effect of the inlet shroud is found in the following point: It restrains flow separation

at the entrance fairly well and the wind flows in more smoothly. Further examination of
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Fig. 3. Flows around a nozzle- and diffuser-type models. L/D ¼ 7.7. The smoke flows from left to right: (a)

nozzle-type model and (b) diffuser-type model.
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the inlet shroud was not conducted in the present experiment. In the next section, we
discuss the mechanism that causes the wind to increase when using a flange.

Concerning the aforementioned experiments, although we mainly examined the
acceleration performance using diffusers with square sections because of easier model
production, we also examined diffusers with circular sections and found that they
performed similar to that of the diffusers with square sections.

3.3. Mechanism of wind velocity acceleration

Here, we discuss the reason why the wind speed increases near the entrance when a large
flange is attached to the outer periphery of a diffuser exit. Fig. 5 shows the visualization
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Fig. 5. Flow around a circular-diffuser model with a flange. The smoke flows from left to right L/D ¼ 1.5. The

area ratio m (outlet area/inlet area) of the circular-diffuser model is 1.44.
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Fig. 6. Schematic view of flow mechanism around a flanged diffuser.
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result of the flow around a circular diffuser (D ¼ 40 cm) equipped with a flange using the
smoke-wire technique. The flange used for the circular diffuser is a ring-type circular disk
with a height of h ¼ 10 cm (h/D ¼ 0.25) and is attached to the outer periphery of the
diffuser exit. The flow is from left to right. The vortex formation like the Karman vortex
street is seen downstream of the flange. As shown in Fig. 7b (discussed later), owing to
the vortex formation, the static base pressure pb in the exit area at around x/L ¼ 1 of the
diffuser equipped with a flange falls to a fairly low pressure compared to that of the
upstream flow pN, in comparison to the case of diffuser without a flange. The base-
pressure coefficient at the exit of x/L ¼ 1 is defined as Cpb ¼ (pb�pN)/(0.5rUN

2 ). For the
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diffuser without a flange, Cpb ¼ �0.2. In contrast, for the diffuser equipped with a flange
of h/D ¼ 0.25, Cpb ¼ �0.75.

From the smoke streaklines in Fig. 5, we can see that the approaching flow is inhaled
into the diffuser near the entrance. Thus, the flange generates a low-pressure region in the
near wake of the diffuser owing to the vortex formation and draws the flow into the
diffuser. Fig. 6 illustrates an overview of the present wind-acceleration system. Generally, a
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flange may be thought to be an obstacle against the flow coming smoothly. However, this
flange generates large size of separation behind it, where a low-pressure region appears to
draw more wind compared to a diffuser with no flange. Owing to this effect, the flow
coming into the diffuser can be effectively concentrated and accelerated.

3.4. Optimum size of the flange

We examined the optimum size of the flange to obtain the largest increase in wind speed
near the diffuser entrance. The model used was a circular diffuser with L/D ¼ 1.5
(D ¼ 20 cm). Circular flange of various heights of h were attached to the diffuser exit.
Fig. 7 shows the wind velocity distribution U/UN (Fig. 7a) and the static pressure
distribution Cp (Fig. 7b) on the central axis. It was found that the flange of around
h/D ¼ 0.25 is most effective for the wind acceleration. From Fig. 7b, a flange larger than
h/D ¼ 0.25 causes a pressure increase in the upstream flow in front of the diffuser and
prevents the approaching wind from smoothly flowing in. It should be noted that the most
effective size of a flange is dependent on the diffuser length, L.

4. Demonstration experiment of wind power generation performance

4.1. Examination of the optimal flanged diffuser form with a wind turbine installed

Applying the flanged diffuser model to a small-size wind turbine, we examined the
power output increase compared to a standard small wind turbine. Fig. 8 shows the experi-
mental arrangement. It needs to be made into a compact structure to some degree if
commercialization is to be realized. We used a short circular diffuser of L/D ¼ 1.25 in this
Torque transducer

AC torque motor brake 

Wind turbine with a 

flanged diffuser 

Fig. 8. Experiment on the power output generation of a wind turbine equipped with a flanged diffuser shroud.
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demonstration experiment. The entrance diameter was D ¼ 60 cm, and a flange height of
h/D ¼ 0.5 was adopted. As shown in Fig. 7, the optimal size of the flange is about
h/D ¼ 0.25 if a wind turbine is not installed inside the diffuser shroud. However, if a wind
turbine is installed and works on the wind as a form of resistance, a larger flange of around
h/D ¼ 0.5 was effective for collecting and drawing the wind into the diffuser shroud.

Similarly, the diffuser opening angle j (see Fig. 9) was changed from j ¼ 41 to 121. It
was found that when a wind turbine is installed in the diffuser entrance, it plays the role of
a resistance body and controls separation of the flow inside the diffuser (Ohya et al., 2004).
A numerical simulation also proved this. Abe and Ohya (2004) prepared a resistance screen
model for their numerical model and examined how the flow inside the diffuser changes
with the degree of the resistance screen. As a result, they showed that, in case of the
resistance model, the flow separation near the diffuser entrance could be suppressed as the
wind flows along the inner wall of the diffuser. Thus, the installation of a wind turbine
reduces wind energy and works as a resistance body to the wind. For another reason, it
seems that the diffuser becomes more efficient due to the additional swirl mixing
mechanism, which increases boundary-layer momentum exchange. Therefore, this makes
the adoption of a wider diffuser opening angle possible and leads to an improvement in the
pressure recovery coefficient of the diffuser. This is an important parameter for shrouded
wind turbine with flanged diffusers (Inoue et al., 2002).

Furthermore, we examined other shape parameters of the flanged diffuser such as the inlet
shroud, hub ratio, centerbody length and so on, as illustrated in Fig. 9. Finally, we adopted a
hub ratio Dh/D ¼ 22% and the centerbody length Ls ¼ 0.75L (Ohya et al., 2004). Thus, the
optimal shape for the flanged diffuser shroud used with a wind turbine has been found.

4.2. Output performance test of a wind turbine with a flanged diffuser shroud

As for the experimental method, a torque transducer (the rating 5Nm) was connected
to the wind turbine and an AC torque motor brake was set behind it for the loading.
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We measured the torque Q (Nm) and the rotational speed n (Hz) of the wind turbine under
the condition of gradually increasing the turbine load from zero. The calculated power
output P (W) ¼ Q� 2pn is shown as a performance curve. A wind turbine with a flanged
diffuser shroud was supported by a long straight bar from the measurement bed, which
was placed downstream and consisted of a torque transducer, a revolution sensor and an
AC torque motor brake, as shown in Fig. 8. The approaching wind speed UN was 6m/s
and the representative scale length equalled the diffuser entrance diameter D ( ¼ 60 cm)
giving a Reynolds number Re ¼ 2.4� 105.
Fig. 10 shows the experimental results. The horizontal axis shows the blade-tip-speed

ratio l ¼ or/UN. Here, o is the angular frequency, 2pn, and r is the radius of a
wind turbine rotor (r ¼ 0.294m). The vertical axis shows the power coefficient Cw

( ¼ P/(0.5rUN

3 A); where, A is the rotational area of the wind turbine rotor, pr2). A wind
turbine blade with NACA63-2 wing section contour was designed using a three-bladed
wind turbine, resulting in an optimum tip-speed ratio of 5.0. As shown in Fig. 10, when a
flanged diffuser is applied, a remarkable increase in the output power coefficient of
approximately 5 times that of a conventional (bare) wind turbine is achieved. Namely, the
Cw is 0.26 for a bare wind turbine, on the other hand, the Cw is 1.38 for a wind turbine with
a flanged diffuser. The experimental results shown in Fig. 10 were obtained under the same
wind speed and swept area of a wind turbine. It should be noted that, in the present
experiment, the wind turbine rotor used is very small (the rotor diameter is 0.59m),
therefore the local chord of a blade leads to a low Reynolds number. The poor
performance of the rotor (Cw ¼ 0.26) seems to be related to Reynolds number effects.
To investigate the increase in wind velocity when the flanged diffuser is applied or not,

the mean wind velocity U distributions in the radial direction in front of the rotating plane
of blades were measured at each optimal tip-speed ratio (l ¼ 4.2 for the wind turbine
equipped with a flanged diffuser and l ¼ 2.5 for the wind turbine only) using an I-type
hot-wire with an anemometry. Fig. 11 shows the comparison of wind velocity distributions
in the blade (radial) direction between the wind turbine equipped with a flanged diffuser
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and the wind turbine only. In the horizontal axis, K is the local velocity ratio (local wind
speed-up ratio) of U/UN. In the vertical axis, r is the distance from the central axis of the
wind turbine. D is the throat diameter of the diffuser as shown in Fig. 9. For the wind
turbine with a flanged diffuser, K is around 1.3 as a spatial average in front of the
blade-rotating plane. On the other hand, for the wind turbine only (without a flanged
diffuser), K is around 0.8. The cubic value of (1.3/0.8)3 almost reaches 4.3. This is
consistent with the 4–5 times increase in the output power as shown in Fig. 10.

5. Field experiment on a prototype wind turbine with a flanged diffuser shroud

Fig. 12 shows the first prototype of a shrouded wind turbine equipped with a flanged
diffuser (500W class). The diffuser length of this prototype is 1.25 times as long as the
diameter of the diffuser entrance D (L ¼ 1.25D, D ¼ 0.72m). The height of the flange h is
0.5D. The rotor diameter is 0.7m.

To demonstrate the performance of a new wind turbine, we conducted a field experiment
on a prototype shrouded wind turbine with a flanged diffuser. A shrouded wind turbine
was placed on the top of a tower with a height of 8m, as shown in Fig. 13. The wind speed
was monitored with a three-cup anemometer, which was placed 1m below the wind
turbine. Fig. 14 shows the field experimental result measured on a windy day. The output
power P (W) evaluated as 10min averaged values are shown with the averaged wind speed
U (m/s). As shown in Fig. 14, the averaged output data are plotted almost along the power
curve of Cw ¼ 1.4 obtained from the wind tunnel experiment. Thus, in a field experiment
using the prototype wind turbine with a flanged diffuser, the performance was as expected
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Fig. 12. Prototype wind turbine with a flanged diffuser shroud (500W class). The rotor diameter is 0.7m.

D ¼ 0.72m. The area ratio m (outlet area/inlet area) of the diffuser is 2.35.
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and equalled that of the wind tunnel experiment. This supports that the present wind
tunnel experiment is free from blockage effect.
Through the field experiment, it was found that the important features of this wind

turbine equipped with a flanged diffuser are as follows:
(1)
 Four to five times increase in output power as compared with conventional wind
turbines due to concentration of the wind energy.
(2)
 Flange-based yaw control: The flange at the exit of the diffuser makes wind turbines
equipped with a flanged diffuser rotate following the change in the wind direction, like
a weathercock. As a result, the shrouded wind turbine automatically turns to faces the
wind.
(3)
 Significant reduction in wind turbine noise: Since the vortices generated from the blade
tips are considerably suppressed through the interference with the boundary layer
within the diffuser shroud, the aerodynamic noise is reduced substantially (Abe et al.,
2005, 2006).
(4)
 Improved safety: The wind turbine, rotating at a high speed, is shrouded by a structure
and is also safe against damage from broken blades.
6. Conclusions

We have developed a DAWT that can obtain a remarkably higher power output
compared to conventional wind turbines.
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Fig. 13. Prototype wind turbine with a flanged diffuser shroud in the field experiment (500W class). The wind

speed meter and wind direction meter were set 1m below the wind turbine.
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First, we examined a wind collection-acceleration device that makes it possible to
concentrate the wind energy (i.e., increase the wind velocity locally and draw the wind to a
wind turbine). It was confirmed that a hollow-structure diffuser is as effective as the shroud
form for collecting and accelerating the wind.

To obtain a further increase in wind speed inside the diffuser shroud, a flange of proper
height is attached to the outer periphery of the diffuser exit, successfully realizing a
remarkable increase in wind speed of 1.6–2.4 times that of the approaching wind speed.
This is because the flange generates a low-pressure region in the exit area of the diffuser by
vortex formation and draws the wind into the diffuser.

Based on this idea of a flanged diffuser, we conducted a demonstration experiment of
power generation of a shrouded wind turbine with a flanged diffuser both in the wind
tunnel and field experiments. To obtain a higher power output of the shrouded wind
turbine, we investigated the optimal form of the flanged diffuser with a wind turbine
installed. Namely, we examined various shape parameters of the flanged diffuser such as
the diffuser opening angle, flange height, hub ratio, centerbody length, inlet shroud and so
on. As a result, the wind turbine equipped with a flanged diffuser shroud demonstrated
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power augmentation for a given turbine diameter and wind speed by a factor of about 4–5
compared to a standard (bare) wind turbine.
Incidentally, owing to the existence of the flange, the shrouded wind turbine rotates in

the horizontal plane and always faces in the direction of the approaching wind. Thus, the
yawing motion is automatically controlled by the flange. Furthermore, application of the
diffuser shroud results in a significant reduction of the wind turbine noise (blade-tip noise)
and improves safety against broken blades.
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